Rutgers University: Algebra Written Qualifying Exam August 2017: Problem 4 Solution

Exercise. Let G be a nontrivial finite group of prime power order, and let H be a normal subgroup of G. Show that H contains at least one non-identity element of the center of G.

Solution.				
Suppose $ G = p^k$, where p is prime and H is a normal subgroup of G. Since $H \triangleleft G$, $ghg^{-1} \in H$ for all $g \in G$ and $h \in H$.				
If $H \triangleleft G$ then H is the union of the conjugacy classes of G.				
$H = [g_1] \cup [g_2] \cup \cdots \cup [g_n], \text{where } [g_i] \neq [g_j] \text{ for } i \neq j$				
<u>Recall</u>: $[a] = \{n \in G : g \in G \text{ s.t. } b = gag^{-1}\}$ $[e] = \{e\}$				
Since H is a subgroup of G, $ H G = p^k$				
$\implies H \equiv 0 \mod p \text{ if } H \text{ is non-trivial.}$ $ H = \{e\} + [g_1] + \dots + [g_n] \qquad \text{since conjugacy classes are either disjoint or identical.}$ $= 1 + [g_1] + \dots + [g_n] $ $\implies pm = 1 + [g_1] + \dots + [g_n] \text{ for some } m \in \mathbb{N}$				
But $ [g_i] $ must also divide $ G = p^k$, and the equation above shows that $ [g_i] $ cannot be a multiple of p for every i . $\implies \exists \ell \text{ s.t. } [g_\ell] = 1$ and $g_\ell \neq e$ $\implies g_\ell$ is in the center of G				
Claim: $[a] = 1$ IFF a is in the center of G <u>Proof</u> :				
[a] = 1	\iff	$g^{-1}ag = a$		$\forall g \in G$
	$\iff \qquad \qquad$	ag = ga	e center of C	$\forall g \in G$
	<u></u>			